The conformational changes of 5SrRNA of plant origin in presence of sperminium and spermidinium cations by adiabatic scanning differential calorimetry

M. Wiewiórowski

Insitute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań (Poland)

A. Zielenkiewicz, W. Zielenkiewicz and Żółkiewski

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

(Received 1 October 1990)

Abstract

The results of calorimetric studies of specific transfer for lupin seed (L.S.) and wheat germ (W.G.) 5SrRNA with different concentrations of tri-protonated and tetra-protonated spermine and spermidine are reported. Decomposition of the DSC curves are made. The dependences between type and concentration of salts added to the 5SrRNA solution are discussed.

INTRODUCTION

The results of calorimetric studies of 5SrRNA solutions isolated from lupin seeds (L.S.) and wheat germ (W.G.) both in the absence and in the presence of the salts $MgCl_2$ and tetra-protonated and permethylated spermine cations have been presented [1,2]. Encouraged by the results obtained, we decided to enlarge the range of studies by analysing the influence on 5 SrRNA of various salts of biogenic amines: i.e. hydrochlorides of tetra-protonated and tri-protonated spermine Spm³⁴³ and Spm³³³, and hydrochlorides of tetra-protonated and tri-protonated spermidine Spd³⁴ and Spd³³.

MATERIALS AND METHODS

The preparation of 5SrRNA (from L.S. and W.G.) salts of spermine and spermidine has been described previously [3-5]. 5SrRNA was dissolved in 2ml of 10 mM sodium cacodylate buffer (pH 7.2) containing 1 mM Na₂EDTA and 20 mM NaCl [6] and dialysed extensively against the same

buffer. Samples of 45 A_{260} units of 5SrRNA in 1.5 ml of buffer were usually used for the measurements (final concentration 2.9×10^{-5} M).

RESULTS

The calorimetric studies of 5SrRNA solutions isolated from L.S. and W.G. were carried out for a range of salt concentrations in which it was possible to observe the changes on DSC curves. These curves are presented in Figs. 1–8. In Fig. 1 the DSC curves for 5SrRNA of L.S. in the buffer with addition of 0.067, 0.333, 0.500 and 0.666 mM Spm³⁴³ · 4HCl are presented; in Fig. 2 the curves for 5SrRNA of W.G. with addition of 0.067 and 0.333 mM Spm³⁴³ · 4HCl are shown. With the increase of Spm³⁴³ cation concentration, the change of peak locations to higher temperatures takes place. Comparing the curves presented in Figs. 1 and 2, the significant differences in melting curves for the concentrations 0.067 mM and 0.333 mM can be noted. In Figs. 3 and 4 the DSC curves for 5SrRNA of L.S. with addition of 0.067, 0.134, 0.333 and 0.666 mM Spd³⁴ · 3HCl and for 5SrRNA of W.G. with addition of 0.067 and 0.333 mM Spd³⁴ · 3HCl are presented, respectively.

Fig. 1. DSC plots for L.S. 5SrRNA after addition of Spm³⁴³.4HCl.

Fig. 2. DSC plots for W.G. 5SrRNA after addition of Spm³⁴³.4HCl.

Fig. 3. DSC plots for L.S. 5SrRNA after addition of Spd³⁴·3HCl.

Fig. 4. DSC plots for W.G. 5SrRNA after addition of Spd³⁴·3HCl.

Fig. 5. DSC plots for L.S. 5SrRNA after addition of Spm³³³.4HCl.

Fig. 6. DSC plots for W.G. 5SrRNA after addition of Spd³³·3HCl.

Fig. 7. DSC plots for L.S. 5SrRNA after addition of Spd³³·3HCl.

Fig. 8. DSC plots for W.G. 5SrRNA after addition of Spm³³³·4HCl.

Fig. 9. Highest temperature peaks versus concentration of different salts added to the solution of L.S. 5SrRNA; ----, Spm³³³;, Spm³⁴³; ..., Spd³⁴.

Fig. 11. Decomposition of the DSC curves of L.S. 5SrRNA for 0.333 mM of different salts, (a) Spm³⁴³·4HCl; (b) Spd³³·3HCl.

tively. In Figs 5–8 curves for 5SrRNA of L.S. and W.G. with addition of 0.067, 0.333 and 0.666 mM $\text{Spm}^{333} \cdot 4\text{HCl}$ and $\text{Spd}^{33} \cdot 3\text{HCl}$ are given.

It was found that in all the cases studied the increase of spermine and spermidine cation concentration shifts the location of peaks towards higher temperatures. These changes are dependent on the cation type. This is graphically ilustrated in Fig. 9 which shows the dependence of the second temperature peak versus concentration of the salts added to the L.S. 5Sr-RNA solution.

The results of the deconvolution analysis [7,8] for the chosen DSC curves are presented in Figs. 10–14 and Table 1. In Table 1 the values of temperatures of peaks and ΔH of the distinguished domains are given. The numbers (PN) correspond to the consecutively occurring transformations, with a smaller number indicating the earlier appearance of transformation. The dependence of PN versus peak temperature characteristic for the given

Fig. 12. Decomposition of the DSC curves of W.G. 5SrRNA for different Spd³⁴·3HCl concentrations, (a) 0.067 mM; (b) 0.333 mM.

domain is presented in Fig. 15. In the case of 5SrRNA from W.G. solution with addition of 0.067 mM Spd³⁴ · 3HCl, 0.333 mM Spd³⁴ · 3HCl and 0.333 mM Spm³⁴³ · 4HCl, the dependence is linear, as in the case of 5SrRNA solution from W.G. without any addition [1]. For the other solutions examined, such linear dependences (Fig. 15) were not observed. These dependences are also not observed in the presence of Mg²⁺ ions.

On the basis of ΔH data presented in Table 1, it is possible to note the existence of five groups of domains having the following mean values of enthalpies: 188 kJ mol⁻¹ (numbers 17, 29, 30, 52); 261 kJ mol⁻¹ (numbers 2, 3, 11, 13, 43, 47, 49); 326 kJ mol⁻¹ (numbers 6, 9, 23, 54, 56) and 483 kJ mol⁻¹ (numbers 8, 27, 42, 50). Of the 56 domains distinguished 39 were taken into account. Analysing the appearance of the domains for 5SrRNA from L.S. and W.G. in the presence of the same concentrations of spermine

Fig. 13. Decomposition of the DSC curves of W.G. 5SrRNA for different Spm³⁴³·4HCl concentrations. (a) 0.067 mM; (b) 0.333 mM.

and spermidine salts, L.S. domains appear later than W.G. domains of the same enthalpy values.

The results can be summarized as follows.

(1) Heat adsorption on heating 5SrRNA from L.S. and W.G. with addition of different amount of spermine and spermidine salts is a process taking place over a very broad temperature range (Figs. 1–8). It starts at about 288 K and ends at 375 K. All calorimetric curves are complicated, with at least two peaks, indicating the multistage nature of the process.

(2) In 5SrRNA from both L.S. and W.G., the increase of spermine and spermidine salt concentration shifts the melting curve to higher temperatures.

(3) It can be stated that there is a dependence between the salt concentration and peak temperatures (Fig. 9). In the case of 5SrRNA, the biggest

TABLE 1

Decomposition of 5SrRNA melting curves into components

No.	PN	$T_{\rm m}$ (K)	$\Delta H (\mathrm{kJ}\mathrm{mol}^{-1})$	
L.S. + 0.333	3 mM Spm ³⁴³ ·4HCl			
1	1	320	167	
2	2	328	251	
3	3	333	251	
4	4	344	376	
5	5	350	535	
		Total	1580	
		$\Delta H_{\rm exp} =$	1680	
L.S. + 0.067	7 mM Spd ³⁴ ·3HCl			
6	1	309	408	
7	2	319	295	
8	3	325	478	
9	4	329	403	
10	5	336	302	
11	6	349	265	
-		Total	2151	
		$\Delta H_{\rm exp} =$	2132	
1 + 0.13	mM Spd ³⁴ , 3HCl	onp		
12.3. + 0.15-	1	311	301	
13	2	321	269	
14	3	328	375	
15	4	332	369	
16	5	338	318	
17	6	354	199	
.,	Ū	Total	1921	
		$\Delta H_{\rm eve} =$	1938	
1 5 +0 333	mM Snd ³⁴ , 2UCl	exp		
L.S. + 0.553 19		211	013	
10	1	200	215	
17 20	2	322	259	
20 01	5 A	229	558 AA7	
21 22	4	330	447 566	
22	5	340	200 410	
23	U	J=7 Total	2272	
		$\Lambda H =$	2372	
		exp	2.20	
L.S. + 0.666	5 mM Spd ^{3~} ·3HCl	22.4	220	
24	1	324	320	
20	2	329	106	
20	5	558	308	
2/	4	343	49/	
28	5	344 350	387 197	
29	D	559 Testa 1	18/	
		i otal	2000	
		$\Delta H_{exp} =$	1994	

No.	PN	<i>Т</i> _m (К)	$\Delta H (\mathrm{kJ}\mathrm{mol}^{-1})$	**************************************
L.S. + 0.33	3 mM Spd ³³ ·3HCl			
30	1	317	199	
31	2	324	346	
32	3	337	338	
33	4	344	512	
34	5	349	385	
		Total	1780	
		$\Delta H_{\rm exp} =$	1879	
W.G.+0.0	67 mM Spm ³⁴³ ·4HC	CI .		
35	1	308	220	
36	2	316	346	
37	3	320	333	
38	4	330	337	
39	5	338	338	
		Total	1574	
		$\Delta H_{exp} =$	1570	
W.G. +0.3	33 mM Spm ³⁴³ , 4HC	2		
40	1	331	239	
41	2	338	385	
42	3	352	489	
	-	Total	1113	
		$\Delta H_{\rm exp} =$	1107	
W.G. + 0.0	67 mM Spd ³⁴ ·3HCl			
43	1	310	264	
44	2	316	380	
45	3	325	336	
46	4	331	345	
	·	Total	1325	
		$\Delta H_{\rm exp} =$	1340	
WG + 03	33 mM Spd ³⁴ ·3HCl			
47	1	321	270	
48	2	328	392	
49	3	336	260	
50	4	342	470	
51	5	350	206	
	•	Total	1598	
		$\Delta H_{\rm exp} =$	1599	
$WG \pm 0.3$	33 Spd ³³ , 3HCl			
W .C. + 0.5	1	315	168	
53	2	324	328	
54	~ 3	330	402	
55	4	343	352	
56	5	346	399	
	-	Total	1649	
		$\Delta H_{c} =$	1681	
		exp		

TABLE 1 (continued)

No., number; PN, peak number; T_m , peak temperature; ΔH , transition enthalpy.

Fig. 14. Decomposition of the DSC curves of W.G. 5SrRNA for 0.333 mM Spd³³·3HCl.

change of peak localization occurs for $\text{Spm}^{33} \cdot 3\text{HCl}$, being smaller for $\text{Spm}^{343} \cdot 4\text{HCl}$ and for $\text{Spd}^{33} \cdot 3\text{HCl}$. The smallest influence on the change of peak position occurs with addition of $\text{Spd}^{34} \cdot 3\text{HCl}$. These changes occur even when very low salt concentrations are added to the solutions. For the concentration 0.067 mM significant changes of melting curves can be

Fig. 15. Peak number versus temperature for L.S. and W.G. 5SrRNA for different salt concentrations, \triangle , 0.333 mM Spm³⁴³·4HCl; \bigcirc , 0.067 mM Spd³⁴·3HCl; \square , 0.134 mM Spd³⁴·3HCl; \bigcirc , 0.333 mM Spd³⁴·3HCl; \blacksquare , 0.666 mM Spd³⁴·3HCl; \times , 0.333 mM Spd³³·3HCl; \bigcirc , 0.067 mM Spm³⁴³·4HCl.

observed relative to the melting curve without salt addition. The curve illustrating the changes of localization of peak temperatures in relation to the salts concentration is exponential. As shown in Fig. 9 the "saturation" of solution by the salts takes place for all salts starting from ≈ 0.6 mM concentration. It has to be noted that this concentration is about ten times lower than for the case of "saturation" of solutions by Mg²⁺ ions [1]. These dramatic changes in the influence of spermine salts on the melting curve can be illustrated by the fact that in the case of 0–0.67 mM concentrations of MgCl₂ the changes on the melting curve are negligible.

(4) The deconvolution analysis of results in Table 1 shows that there exists a certain number of domains which can be treated as corresponding to the elementary transformations which always occur. It was noted that the number of domains distinguished in the case of spermine and spermidine salts does not change or changes only slightly.

The results of the studies presented will be useful for structural interpretation of the thermal unfolding patterns for 5SrRNA from lupin seeds and wheat germ.

REFERENCES

- 1 M. Wiewiórowski, A. Zielenkiewicz, W. Zielenkiewicz and M. Żółkiewski, Thermochim. Acta, 182 (1991) 147.
- 2 J. Barciszewski, M.D. Bratek-Wiewiórowska, P. Górnicki, M. Naskręt-Barciszewska, M. Wiewiórowski, A. Zielenkiewicz and W. Zielenkiewicz, Nucleic Acids Res., 16 (1988) 685.
- 3 M.Z. Barciszewska, T.D. Mashkova, T.D. Zwierzyński, L.L. Kisselev and J. Barciszewski, Bull. Acad. Pol. Sci., Chem., 34 (1986) 369.
- 4 M.Z. Barciszewska, T.D. Mashkova, L.L. Kisselev and J. Barciszewski, FEBS Lett., 192 (1988) 289.
- 5 M.D. Bratek-Wiewiórowska, M. Alejska, M. Figlerowicz, J. Barciszewski, M. Wiewiórowski, W. Zielenkiewicz, A. Zielenkiewicz and M. Kamiński, Pure Appl. Chem., 59 (1987) 313.
- 6 H.J. Hinz, V.V. Filimonov and P.L. Privalov, Eur. J. Biochem., 72 (1977) 79.
- 7 E. Freire and R.L. Biltonen, Biopolymers, 17 (1978) 463.
- 8 L.H. Chang, S.-J. Li, T.L. Ricca and A.G. Marshall, Anal. Chem., 56 (1984) 1502.